Simplified Characterizations of Linear Complementarity Problems Solvable as Linear Programs
نویسندگان
چکیده
منابع مشابه
A Class of Linear Complementarity Problems Solvable in Polynomial Time
We describe a “condition” number for the linear complementarity problem (LCP), which characterizes the degree of difficulty for its solution when a potential reduction algorithm is used. Consequently, we develop a class of LCPs solvable in polynomial time. The result suggests that the convexity (or positive semidefiniteness) of the LCP may not be the basic issue that separates LCPs solvable and...
متن کاملA class of polynomially solvable linear complementarity problems
Although the general linear complementarity problem (LCP) is NP-complete, there are special classes that can be solved in polynomial time. One example is the type where the defining matrix is nondegenerate and for which the n-step property holds. In this paper we consider an extension of the property to the degenerate case by introducing the concept of an extended n-step vector and matrix. It i...
متن کاملMATHEMATICAL ENGINEERING TECHNICAL REPORTS Sign-Solvable Linear Complementarity Problems
This paper presents a connection between qualitative matrix theory and linear complementarity problems (LCPs). An LCP is said to be sign-solvable if the set of the sign patterns of the solutions is uniquely determined by the sign patterns of the given coefficients. We provide a characterization for sign-solvable LCPs such that the coefficient matrix has nonzero diagonals, which can be tested in...
متن کاملUnified approaches for solvable and unsolvable linear complementarity problems
In this paper, general linear complementarity problems(Lf'Ps) are studied via global optimization problems. In particular, unsolvable 'LCPs are reformulated as multicriteria optimization, minimax optimization and quadratic programming problems. The solvability and unsolvability of LCPs are obtained via these reformulations. Furthermore, first-order and second-order global optimaiity conditions ...
متن کاملFormulating Dynamic Multi-rigid-body Contact Problems with Friction as Solvable Linear Complementarity Problems
A linear complementarity formulation for dynamic multi-rigid-body contact problems with Coulomb friction is presented. The formulation, based on explicit Euler integration and polygonal approximation of the friction cone, is guaranteed to have a solution for any number of contacts and contact con guration. A model with the same property is formulated for impact problems with friction and nonzer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Operations Research
سال: 1979
ISSN: 0364-765X,1526-5471
DOI: 10.1287/moor.4.3.268